87 research outputs found

    Sequencing technologies and genome sequencing

    Get PDF
    The high-throughput - next generation sequencing (HT-NGS) technologies are currently the hottest topic in the field of human and animals genomics researches, which can produce over 100 times more data compared to the most sophisticated capillary sequencers based on the Sanger method. With the ongoing developments of high throughput sequencing machines and advancement of modern bioinformatics tools at unprecedented pace, the target goal of sequencing individual genomes of living organism at a cost of $1,000 each is seemed to be realistically feasible in the near future. In the relatively short time frame since 2005, the HT-NGS technologies are revolutionizing the human and animal genome researches by analysis of chromatin immunoprecipitation coupled to DNA microarray (ChIP-chip) or sequencing (ChIP-seq), RNA sequencing (RNA-seq), whole genome genotyping, genome wide structural variation, de novo assembling and re-assembling of genome, mutation detection and carrier screening, detection of inherited disorders and complex human diseases, DNA library preparation, paired ends and genomic captures, sequencing of mitochondrial genome and personal genomics. In this review, we addressed the important features of HT-NGS like, first generation DNA sequencers, birth of HT-NGS, second generation HT-NGS platforms, third generation HT-NGS platforms: including single molecule Heliscopeâ„¢, SMRTâ„¢ and RNAP sequencers, Nanopore, Archon Genomics X PRIZE foundation, comparison of second and third HT-NGS platforms, applications, advances and future perspectives of sequencing technologies on human and animal genome research

    Tools for landscape science: theory, models and data

    No full text
    We review the different roles of theory, models and data in landscape science. The need for science at the landscape scale is argued. Landscape theory is considered as a repository of probabilistic patterns rather than as a collection of laws of nature. We present a typology of such patterns for five distinct landscape features: land cover, land use, patch properties, patch interactions, exogenous influences. We show how theory for these features can support landscape modelling, and we provide a checklist of questions for model developers. The limited availability of data on landscapes is discussed, and how that leads to uncertainties in theoretical patterns as well as models. We analyse how probability theory can be used to account for these uncertainties, strengthening the links between theory, models and data, and facilitating decision-support
    • …
    corecore